The ABI-team seminar by Dr. Daniel Berrar (The Open University, UK)
イベント説明
Join Zoom Meeting
https://riken-jp.zoom.us/j/94755413554?pwd=cTJUZmE3TjNtaXhwaUVKUHhBOGJPZz09
Title:
Self-organizing incremental neural networks for unsupervised and supervised continual learning
Abstract:
A fundamental characteristic of how humans learn is that we acquire knowledge incrementally. By contrast, the standard machine learning life cycle is characterized by a clear distinction between a learning phase and an application phase. Also, machine learning models are usually designed for stationary environments where the data-generating process is assumed to be stable over time. In many real-world applications, however, the data are non-stationary with concept drifts, i.e., sudden, unforeseeable changes of the data distribution. Continual learning denotes the machine learning paradigm that considers adaptive models capable of learning new tasks and adapting to non-stationary data. A key characteristic of a continual learner is the ability to learn new tasks without compromising previously acquired knowledge, that is, without catastrophic forgetting -- even when completely new tasks are to be learned. In this talk, I will present our latest work on self-organizing incremental neural networks (SOINN) for continual learning. SOINN+ is an unsupervised learning algorithm that can detect clusters of arbitrary shapes in noisy evolving data streams. GSOINN+ is a supervised learning algorithm that can mitigate catastrophic forgetting in sequential learning tasks from different domains.
Short biography:
Daniel Berrar received his PhD from the University of Ulster, UK, in 2004 and is currently a Lecturer in Statistics and Data Science at the School of Mathematics & Statistics at The Open University, UK. Before joining The Open University, he was a specially appointed Associate Professor at Tokyo Institute of Technology, Japan. His research interests are statistical machine learning, data science, and the overarching field of artificial intelligence. He is active in three different research directions: (1) statistical evaluation and selection of machine learning models; (2) high-dimensional inference and optimization; and (3) continual learning. Potential applications of his work can be found in various fields that use machine learning for data analysis and knowledge extraction from high-dimensional data, with a focus on the life and health sciences.
(http://www.berrar.com/)
開催日
2023年1月11日11:30 ~ 2023年1月11日13:00
主催者・問い合わせ先
RIKEN AIP Public
開催場所
項目 | 内容 |
---|---|
場所 | 名称未設定 |
住所 | Meeting room 4 at AIP Nihombashi, but can also attend through Zoom (see the description for a link) |
開催場所の地図
SNS・Bookmark
近隣のイベント
- 2018年6月6日 - 【20代限定】【夜活】あなたの未来は環境と習慣で決まる 東京 カフェ会
- 2018年6月6日 - 【20代限定】【夜活】あなたの未来は環境と習慣で決まる 東京 カフェ会
- 2018年6月6日 - 6/6 品川のカフェで朝活やります! (水曜コミットメント朝活・お茶代のみ) 【東京都】
- 2018年6月6日 - 副業解禁朝活ナビ
- 2018年6月5日 - 目から鱗の護身術 〜精妙流兵法之会〜in 中野の隠れ道場
- 2018年6月5日 - 【初心者向け】【実績NO.1】東京キャッシュフローゲームイベント
- 2018年6月5日 - 【お陰様で15周年】キャッシュフローゲーム会
- 2018年6月5日 - 6/5(火)情報の質は人生を左右する‼️CFG会@東京
- 2018年6月5日 - 【初心者向け】【実績NO.1】東京キャッシュフローゲームイベント
近隣の場所 (直線距離)
- RED° TOKYO TOWER SKY STADIUM (3.6km)
- 串屋松吉 (3.4km)
- 成瀬ヨーガグループ (7.5km)
- 社食エリア (7.4km)
- 東京都千代田区 サピアタワー内 ステーションカンファレンス東京 503-C 会議室 (575m)
- Spaces Shinagawa (6.6km)
- シエンプレ株式会社 (7km)
- 野田焼売店 紀尾井本店 (3.3km)
- 新宿御苑アート貸し会議室 (5.6km)
- 博多もつ処 煌梨 目黒店 (7.3km)
- ウルシステムズ株式会社 (2.8km)
- BLINK 六本木 (4.8km)
- Spaces Shinagawa (6.6km)
- 渋谷ヒカリエカンファレンス (6.9km)
- 株式会社サーバーワークス 東京オフィスANNEX (3.6km)
- xBridge-Kyobashi (768m)
- 渋谷・表参道周辺(集合場所:宇田川町ビルディング3階) (7.2km)
- WITH HARAJUKU HALL (6.5km)
- MAMEHICO銀座 (1km)